Replicación de las cadenas antiparalelas

Las dos cadenas de ADN son antiparalelas, por tal razón la ADN polimerasa puede solamente sintetizar un nuevo ADN en la dirección 5' a 3'. Esto produce problemas especiales para replicar una doble cadena de ADN.

Paso 2
En la cadena de arriba, la primasa sintetiza un ARN base en la dirección 5' a 3'. La primasa se va, y la ADN polmerasa agrega nucleótidos de ADN al ARN base en la dirección 5' a 3'. En E. coli la enzima usada es la ADN polimeraasa III. Este nuevo ADN es llamada cadena retrasada, debido a que es elaborada en la dirección opuesta al movimiento de la bifurcación de replicación. El segmento producido se le conoce también por fragmento de Okazaki. a de ADN.

GENES LETALES

Los genes sufren procesos de mutación y otros procesos de reorganización de manera que se presentan en formas diferentes con unas variaciones en su secuencia denominadas alelos.Hay un tipo de alelos que son los denominados alelos letales, los cuales son alelos mutantes que causan la muerte de los individuos.Hay dos tipos de alelos letales, el dominante,que es aquel que causa la muerte en heterocigosis (condición de heterocigota) y el alelo letal recesivo,que es aquel que causa la muerte en homocigosis (condición de homocigota).Un alelo letal dominante nunca será heredable porque el individuo que lo posee nunca llegará a la madurez y no podrá dejar descendencia. Los alelos letales dominantes se originan por mutación de un gen normal y son eliminados en la misma generación en la que aparecen. Por el contrario, los genes letales recesivos quedan enmascarados bajo la condición de heterocigosis y en un cruzamiento entre heterocigotos la cuarta parte de los descendientes morirán.En estos hay un gen esencial (aquellos que al mutar pueden resultar en un fenotipo letal), el gen para el color amarillo del cuerpo en ratones. El color amarillo es una característica codificada por AY. Ratones genotípicamente AYAY no son viables y mueren antes del nacimiento. Los ratones AY A son amarillos y ratones A A son no amarillos.
Aquí se puede observar la explicación acerca de este hecho en los ratones con el complemento de este esquema. El funcionamiento de este proceso, está relacionado con las leyes de Mendel, que son un conjunto de reglas primarias relacionadas con la transmisión por herencia de las características que poseen los organismos padres y transmiten a sus hijos; este mecanismo de herencia tiene su fundamento en la genética.

Estructura del ADN



La información con la que se fabrican las moléculas necesarias para el mantenimiento de las funciones celulares está guardada en una molécula de ácido nucleico llamada ácido desoxirribonucleico (ADN). En este apartado describiremos su estructura y explicaremos cómo se almacena dentro del núcleo celular.
En la década de los cincuenta, el campo de la biología fue convulsionado por el desarrollo del modelo de la estructura del ADN. James Watson y Francis Crick en 1953 demostraron que consiste en una doble hélice formada por dos cadenas.
El ADN es un ácido nucleico formado por nucleótidos. Cada nucleótido consta de tres elementos:
un azúcar: desoxirribosa en este caso (en el caso de ARN o ácido ribonucleico, el azúcar que lo forma es una ribosa),
un grupo fosfato y
una base nitrogenada
Si la molécula tiene sólo el azúcar unido a la base nitrogenada entonces se denomina nucleósido.
Las bases nitrogenadas que constituyen parte del ADN son: adenina (A), guanina (G), citosina (C) y timina (T). Estas forman puentes de hidrógeno entre ellas, respetando una estricta complementariedad: A sólo se aparea con T (y viceversa) mediante dos puentes de hidrógeno, y G sólo con C (y viceversa) mediante 3 puentes de hidrógeno.
Los extremos de cada una de las hebras del ADN son denominados 5’-P (fosfato) y 3’–OH (hidroxilo) en la desoxirribosa. Las dos cadenas se alinean en forma paralela, pero en direcciones inversas (una en sentido 5’ → 3’ y la complementaria en el sentido inverso), pues la interacción entre las dos cadenas está determinada por los puentes de hidrógeno entre sus bases nitrogenadas. Se dice, entonces, que las cadenas son antiparalelas.

HISTONAS

Las histonas son proteínas básicas, de baja masa molecular, muy conservadas evolutivamente entre los eucariotas y en algunos procariotas. Forman la cromatina junto con el ADN, sobre la base de unas unidades conocidas como nucleosomas.
Las cuatro histonas core, o nucleares, forman un octámero (paquetes de 8 moléculas) alrededor del cual se enrolla el ADN, en una longitud variable en función del organismo. Este octámero se ensambla a partir de un tetrámero de las histonas llamadas H3 y H4, al que se agregan dos heterodímeros de las histonas denominadas H2A y H2B. Las histonas externas, o linker, H1 (y H5 en aves) interaccionan con el ADN internucleosomal. El conjunto del ADN enrollado alrededor del octámero de histonas, junto con la histona H1 y una cierta longitud de ADN linker, o internucleosomal constituye lo que se conoce como nucleosoma. Las histonas core desarrollan un papel decisivo en el primer nivel de compactación del ADN dentro del núcleo, en la estructura conocida como nucleosoma. Las histonas linker, por otro lado, producen un empaquetamiento de orden superior de los nucleosomas.
Las histonas contienen un motivo estructural muy importante para los contactos moleculares dentro del octámero de histonas core, denominado histone fold (se podría traducir como pliegue de histona). Este motivo consiste en 65 aminoácidos que se estructuran en una organización extendida tipo hélice-hoja-hélice. En concreto, contiene una corta hélice alfa, un giro/hoja beta, una hélice alfa larga, otro giro/hoja beta, y otra hélice alfa corta.
Las histonas core pueden ser modificadas covalente y post-traduccionalmente, en general en sus extremos amino-terminales, mediante reacciones catalizadas por una serie de actividades enzimáticas. Éstas pueden ser citoplasmáticas, y actúan sobre las histonas previamente a su ensamblamiento en los nucleosomas, o bien, nucleares y afectan a histonas nucleosomales. Se ha postulado una teoría denominada histone code, o "código de histonas", según la que estas modificaciones pueden tener consecuencias en cuanto a: 1) La facilidad con la que proteínas asociadas a cromatina (factores transcripcionales, etc ...) podrían acceder al ADN. 2) La generación de combinaciones de modificaciones en un extremo de histona, o en varios dentro de un nucleosoma. 3) Las estructuras de eucromatina y heterocromatina serán en mayor medida dependientes de las concentraciones locales de histonas modificadas. En conclusión, estas modificaciones podrían extender la información potencial del material genético.

Translocaciones

Las translocaciones se producen cuando dos cromosomas no homólogos intercambian segmentos cromosómicos.



Las translocaciones pueden detectarse citológicamente porque el heterocigoto estructural forma un cuadrivalente (asociación de 4 cromosomas) en la profase meiótica. A veces también se pueden detectar por producirse cambios en el tamaño de los cromosomas si los segmentos intercambiados son de distinta longitud
Veamos un ejemplo de un heterocigoto estructural para una translocación recíproca y todas las configuraciones en Metafase I dependiendo de los sobrecruzamientos



Al microscopio electrónico se observaría un cambio de apareamiento entre 4 cromosomas

los 4 centrómeros de los cromosomas implicados en el cuadrivalente, pueden coorientar de distintas formas en metafase I. Si la segregación es concordante (2 centrómeros orientados a cada polo), los centrómeros pueden coorientar de formas distintas, dando lugar a coorientaciones adyacentes o alternadas.
Adyacente: Centrómeros contiguos en el cuadrivalente van al mismo polo. Puede ser de tipo I si los centrómeros son no homólogos, o de tipo II si los centrómeros son homólogos.
Alternada: Centrómeros contiguos en el cuadrivalente nunca van juntos al mismo polo.




















Existe una controversia entre los distintos autores, si realmente existen dos configuraciones alternadas o tan sólo una. Si dibujamos tridimensionalmente el cuadrivalente en configuración alternada, es fácil observar que alternada 1 y alternada 2 son posibles en el mismo cuadrivalente variando el punto de vista. Este hecho añadido al que genéticamente son iguales ambas configuraciones (dan los mismos gametos en meiosis), hace que muchos investigadores opinen que sea más correcto hablar de una sóla configuración alternada.
Estudiemos esta controversia con un ejemplo determinado: Supongamos que entre los cromosomas implicados en la translocación tenemos un marcador citológico, como por ejemplo una banda de heterocromatina, en uno de los brazos de un par de cromosomas.
Las configuraciones alternadas las obtendríamos girando 180º la parte derecha del cuadrivalente de cada configuración adyacente.
Dependiendo si la configuración es de Tipo 1 o Tipo 2, el marcador citológico estaría en un lateral o en el centro del cuadrivalente, pudiendo de esta forma distinguir entre un tipo u otro de coorientación simplemente observando la posición del marcador.



Pero pensemos que todo lo dicho anteriormente es cierto cuando lo estudiamos en el plano, en dos dimensiones. La célula no es plana y además nosotros hacemos estas observaciones al microscopio óptico mediante un aplastamiento de dicha célula (técnica de aplastado o squash). Si imaginamos que la célula es esférica o lenticular, y la vamos rodeando visualmente, no es difícil darse cuenta que nuestro marcador citológico, unas veces se encuentra en el centro y otras en el exterior del cuadrivalente.




Dependiendo de la forma de los cromosomas (acrocéntricos o meta-submetacéntricos) y del lugar dónde se producen los sobrecruzamientos, las distintas configuraciones darán gametos viables o inviables, produciéndose una semiesterilidad en el heterocigoto estructural. Las coorientaciones de tipo adyacente 2, por regla general, siempre producen gametos inviables al poseer un desequilibrio cromosómico.




















Cuando un mismo cromosoma está implicadoeb más de una translocación con varios cromosomas del complemento, la configuración crítica no es un cuadrivalente, es otro tipo de multivalente formado por los cromosomas implicados.
Hexavalente: Dos translocaciones con un cromosoma en común
Octovalente: Tres translocaciones con dos parejas cromosómicas comunes implicados en ellas
Dos cuadrivalentes: Dos translocaciones con ningun cromosoma en común

De igual forma que ocurría con las inversiones, las translocaciones tienen mucha importancia evolutiva. El caso más extremo de utilización de las translocaciones como mecanismo de evolución, se produce en el género Oenothera, en el que los individuos son heterocigotos estructurales permanentes ya que todos los cromosomas están implicados en translocaciones múltiples. En la meiosis de estos individuos se forma un único multivalente y sólo se forman dos tipos de gametos viables. Esto es posible a que por medio de translocaciones múltiples se han llegado a formar dos grupos de cromosomas (Complejos C y Complejos R) de tal forma que cada cromosoma tiene los extremos de los brazos cromosómicos homólogos a los extremos de otros cromosomas distintos del otro grupo. La zona central no aparea nunca al ser muy pequeña o no tener homólogo en el otro complejo.







En animales el tipo de translocación más frecuente son las fusiones y fisiones céntricas, tambien denominadas translocaciones Robertsonianas.
Existen diversos mecanismos mediante los cuales dos cromosomas acrocéntricos dan lugar a un cromosoma meta o submetacéntrico (fusión) y el caso recíproco (Fisión)




Robertson estudió la estructura cromosómica de varios grupos taxonómicos que presentaban polimorfismos para este tipo de translocaciones. Su conclusión principal es conocida como la hipótesis de Robertson de conservación del número fundamental. Esta hipótesis propone que en distintos grupos taxonómicos, puede haber variación en el número cromosómico, pero el número de brazos (número fundamental) cromosómicos permanece constante.

Las translocaciones pueden utilizarse en la construcción de mapas citogenéticos ya que permiten calcular distancias entre el punto de translocación y distintos loci situados en los cromosomas implicados



Inversiones

Una inversión es cuando un segmento cromosómico cambia de orientación dentro del cromosoma. Para que se produzca este suceso es necesario una doble rotura y un doble giro de 180º del segmento formado por las roturas. Hay dos tipos de inversiones según su relación con el centrómero:
Pericéntricas: Incluyen al centrómero. Se detectan fácilmente al microscopio óptico pues implican un cambio en la forma del cromosoma.
Paracéntricas: No incluyen al centrómero y por tanto tampoco afectan a la forma del cromosoma.


En meiosis, es fácil detectar una inversión ya que en paquitena, los cromosomas al intentar estar totalmente apareados, forman un bucle o rizo característico.






Si se da un sobrecruzamiento en la zona invertida, en las inversiones paracéntricas, lo mas frecuente es que se forme un puente y un fragmento en la primera o segunda anafase meiótica (dependiendo del número y de las cromátidas implicadas en los sobrecruzamientos). El fragmento formado en este proceso es siempre del mismo tamaño e igual a la zona invertida más dos veces la distancia entre el punto de inversión y el telómero, independientemente de donde se produzcan los sobrecruzamientos. En las inversiones pericéntricas no ocurre este fenómeno.
Cuando se produce el puente y el fragmento se forman gametos inviables y una reducción teórica de la fertilidad en un 50%, ya que de los 4 productos meióticos, dos serán inviables, y dos viables, uno con la ordenación estándar y otro con la ordenación invertida. Hemos de tener en cuenta también que por lo anteriormente explicado, cuando se da sobrecruzamiento en la zona invertida, no se produce recombinación dentro de ese segmento, por lo tanto todos los genes comprendidos en el segmento invertido se transmiten siempre juntos como si estuvieran en un solo bloque de ADN.



























Las inversiones son de gran importancia evolutiva ya que pueden ser un mecanismo de aislamiento reproductivo debido a la semiesterilidad del híbrido y al hecho de no existir recombinación en el segmento invertido. Todos los genes que se encuentran en el segmento invertido se transmiten siempre juntos y en ese orden, es como si formaran un grupo de ligamiento o un supergen que no sufre alteraciones por recombinación.
En el género Drosophila es muy frecuente la existencia de polimorfismos para inversiones. Estudiando la estructura cromosómica de las diversas especies es posible establecer un árbol filogenético de este género. Dobzhansky y su grupo de investigación, analizaron el cariotipo de diversos grupos taxonómicos, especialmente de los drosophílidos. Esta estructura cromosómica se relaciona con la distribución geográfica puediendose reconstruir la historia evolutiva de las distintas especies. Cuando se realizan estos tipos de estudios, se va analizando el nivel de polimorfismos en cada zona o región. Existe una zona geográfica con una ambiente muy favorable, donde pueden coexistir muchas especies o subespecies y el nivel de polimorfismos es muy elevado. Según nos vamos alejando de este núcleo o región central, las condiciones ambientales son distintas y menos favorables a todos los grupos taxonómicos, en estas zonas solamente existirán los individuos más adaptados y por lo tanto el nivel de polimorfismo será menor.
El problema de la semiesterilidad derivado de la meiosis, es evitado en el género Drosophila ya que se dan unas circustancias muy especiales: recordemos que el macho es aquiasmático (por lo tanto nunca formará puente ni fragmento), y en las hembras lo que ocurre es que las cromátidas del puente nunca van a llegar al óvulo, sino que se quedan en los corpúsculos polares.



Duplicaciones




Las duplicaciones surgen cuando un segmento cromosómico se replica más de una vez por error en la duplicación del ADN, como producto de una reorganización cromosómica de tipo estructural (ver más adelante inversiones y translocaciones), o relacionado con un proceso de sobrecruzamiento defectuoso. Las duplicaciones no suelen ser deletéreas, más bien diríamos que es una fuente de nuevo material genético y base para nuevos cambios evolutivos. Muchas de las familias génicas con un origen evolutivo común, o las familias multigénicas pueden tener su origen en las duplicaciones. Si el segmento afectado es de gran tamaño, se puede detectar en meiosis con los mismos criterios que en las deleciones (bivalente heteromorfo o zona intersticial desapareada en el cromosoma con la duplicación).







DELECIONES










Un individuo es portador de una deleción cuando le falta un segmento cromosómico, si este segmento es un extremo del cromosoma, la alteración se denomina deficiencia. Si la deleción es muy grande es visible al microscopio óptico ya que el cromosoma presenta menor tamaño del normal.
La deleción en homocigosis suele ser letal para el individuo portador, si se presenta en heterocigosis, el efecto será más o menos deletéreo dependiendo de la importancia de los genes presentes en el segmento perdido. En individuos con determinación sexual XX-XY o XX-X0, las deleciones del cromosoma X son letales en los machos; En las hembras dependiendo del sistema de compensación de dosis génica, puede producir algunos efectos fenotípicos en el individuo heterocigótico. En la especie humana, en nacidos vivos, la deleción más frecuente y estudiada, es la conocida como síndrome de "Grito de gato", consiste en una deficiencia del brazo corto del cromosoma 5, que produce un retraso mental y finalmente la muerte del individuo.
En meiosis la configuración crítica para detectar una deleción es ver un bivalente heteromorfo, o bien observar una falta de apareamiento (bucle o lazo en el cromosoma no delecionado) en un segmento intersticial.
Dada la letalidad y el desequilibrio orgánico y cromosómico que producen las deleciones, la selección natural tiende a eliminarlas y por ello la importancia evolutiva de las deleciones es prácticamente nula.









GENETICA MENDELIANA

Antes de la genética mendeliana existía la pangénesis: lo que se transmitía estaba en el semen, y cada parte del cuerpo cedía algo. El semen agrupaba, por tanto, de todo un poco. Aristóteles, Lamarck, incluso Darwin, mantuvieron la pangénesis. Weismann distinguió:
somatoplasma: que formaba el cuerpo.
plasma germinal: era el que se transmitía a la descendencia. Se formaba en un momento determinado y ya no se volvía a modificar, ya no se volvía a pedir información a las distintas partes del cuerpo. Así, se explicaba que aunque un sujeto perdiera, por poner un ejemplo, un dedo, no tenía por ello hijos sin ese dedo.
Weismann cortó la cola a ratones durante varias generaciones, pero los ratones seguían naciendo con cola. Así, concluyó que el plasma germinal se formaría en un momento antes del nacimiento del individuo.
Gregor Mendel (1822-1894). Este monje agustino, encargado del huerto de su monasterio, decide estudiar los guisantes y sus características. Empezó a ver cosas como que cuando plantaba guisantes rugosos nacían guisantes rugosos, cuando plantaba lisos salían lisos, cuando los cruzaba bien salían rugosos bien salían lisos. Cruzó los distintos tipos y anotó todas las combinaciones. Seleccionó unos caracteres frente a los otros. Se fijó, por ejemplo, en la forma del guisante, en el tallo, en el color de las flores. La suerte que tuvo fue que seleccionó caracteres diferenciales, puros. Cuantificaba todo resultado que obtenía, todo lo expresaba en números. De sus anotaciones sacó una serie de conclusiones. Estas reglas generales fueron publicadas, pero pasaron desapercibidas. Hasta más de 60 años después no reprodujeron otros sus experiencias. Algunos investigadores estudiaron lo mismo y descubrieron que Mendel lo había hecho incluso mejor bastantes años antes. Las reglas que Mendel aplicó a las plantas son válidas para todas las especies animales y vegetales. Son, por tanto, leyes generales. Los caracteres que eligió eran cualidades puras, esto era algo que él no sabía.
Primera ley de Mendel
Siempre la primera generación son individuos híbridos que presentan los rasgos de uno solo de los parentales. A este parental se llamaba rasgo dominante, al otro, rasgo recesivo. Esto ocurría con cualquier rasgo (color, tamaño, etc.).
A esta primera ley podemos añadir dos excepciones:
Dominancia incompleta: una planta puede tener flores blancas o flores carmesí. La descendencia de cruzar ambos tipos las tiene rosadas. Cuando se cruzan miembros de esta primera generación se obtienen miembros en proporción que no es 3:1, sino 1:2:1.
Codominancia: el ejemplo típico es el de los grupos sanguíneos. Nosotros podemos tener características del padre y de la madre al mismo tiempo. No hay sólo dos tipos de grupo sanguíneo, sino 4. Los 4 tipos (establecidos por el grado de aglutinación de los glóbulos rojos) son fruto de la combinación de genes del padre y de la madre.
Segunda ley: ley de la segregación
Los caracteres reaparecen en la segunda generación. Es decir, los caracteres `enmascarados' (recesivos) en la primera generación resurgen en la segunda. Esto se demostraba siempre que hablábamos de caracteres puros (homocigotos). La manera de saber si son homocigotos es sencilla: cruzamos con el carácter que queda enmascarado en la primera generación. Si es heterocigoto (Aa) dará la mitad de Aa y la mitad de aa. Esta técnica se llama retrocruzamiento.
Tercera ley de Mendel
Los caracteres se combinan independientemente. Cada pareja alélica es independiente a la hora de combinarse con otra. Esto se ve claro si tratamos 2 caracteres al mismo tiempo. Por ejemplo: tenemos ratones negros de pelo corto y ratones castaños de pelo largo, y los cruzamos. Partimos de que sus caracteres son puros.

El código genético

El código genético viene a ser como un diccionario que establece una equivalencia entre las bases nitrogenadas del ARN y el leguaje de las proteínas, establecido por los aminoácidos.
Después de muchos estudios (1955 Severo Ochoa y Grumberg; 1961 M.Nirenberg y H. Mattaei) se comprobó que a cada aminoácido la corresponden tres bases nitrogenadas o tripletes (61 tripletes codifican aminoácidos y tres tripletes carecen de sentido e indican terminación de mensaje).

Características del código genético:
1- 1- Es universal, pues lo utilizan casi todos los seres vivos conocidos. Solo existen algunas excepciones en unos pocos tripletes en bacterias.
2- 2- No es ambiguo, pues cada triplete tiene su propio significado.
3- 3- Todos los tripletes tienen sentido, bien codifican un aminoácido o bien indican terminación de lectura.
4- 4- Está degenerado, pues hay varios tripletes para un mismo aminoácido, es decir hay codones sinónimos.
5- 5- Carece de solapamiento, es decir los tripletes no comparten bases nitrogenadas.
6- 6- Es unidireccional, pues los tripletes se leen en el sentido 5´-3´.

Traducción (Síntesis de Proteínas)


El ARN mensajero es el que lleva la información para la síntesis de proteínas, es decir, determina el orden en que se unirán los aminoácidos.
Esta información está codificada en forma de tripletes, cada tres bases constituyen un codón que determina un aminoácido. Las reglas de correspondencia entre codones y aminoácidos constituyen el código genético (ver).
La síntesis de proteínas o traducción tiene lugar en los ribosomas del citoplasma. Los aminoácidos son transportados por el ARN de transferencia, específico para cada uno de ellos, y son llevados hasta el ARN mensajero, dónde se aparean el codón de éste y el anticodón del ARN de transferencia, por complementariedad de bases, y de ésta forma se sitúan en la posición que les corresponde.
Una vez finalizada la síntesis de una proteína, el ARN mensajero queda libre y puede ser leído de nuevo. De hecho, es muy frecuente que antes de que finalice una proteína ya está comenzando otra, con lo cual, una misma molécula de ARN mensajero, está siendo utilizada por varios ribosomas simultanéamente.
En esta maqueta se ha representado el ARN mensajero como una varilla con los codones (juego de tres colores). El ribosoma está fijado al filamento, y las moléculas de ARN transferencia, con los anticodones unidos a los codones del ARNm . En la parte superior se observan tres aminoácidos unidos .

transcripcion del dna


El proceso de síntesis de ARN o TRANSCRIPCIÓN, consiste en hacer una copia complementaria de un trozo de ADN. El ARN se diferencia estructuralmente del ADN en el azúcar, que es la ribosa y en una base, el uracilo, que reemplaza a la timina. Además el ARN es una cadena sencilla.

En una primera etapa, una enzima, la ARN-polimerasa se asocia a una región del ADN,denominada promotor, la enzima pasa de una configuración cerrada a abierta, y desenrolla una vuelta de hélice, permitiendo la polimerización del ARN a partir de una de las hebras de ADN que se utiliza como patrón.

La ARN-polimerasa, se desplaza por la hebra patrón, insertando nucleótidos de ARN, siguiendo la complementariedad de bases, así p.e.Secuencia de ADN: 3'... TACGCT...5'Secuencia de ARNm:5'...AUGCGA...3'
Cuando se ha copiado toda la hebra, al final del proceso , la cadena de ARN queda libre y el ADN se cierra de nuevo, por apareamiento de sus cadenas complementarias.
De esta forma, las instrucciones genéticas copiadas o transcritas al ARN están listas para salir al citoplasma.
El ADN, por tanto, es la "copia maestra" de la información genética, que permanece en "reserva" dentro del núcleo.
El ARN, en cambio, es la "copia de trabajo" de la información genética. Este ARN que lleva las instrucciones para la síntesis de proteínas se denomina ARN mensajero.

Duplicación del ADN






Se dieron muchas hipótesis sobre como se duplicaba el ADN hasta que Watson y Crick propusieron la hipótesis semiconservativa (posteriormente demostrada por Meselson Y Stahl en 1957), según la cual, las nuevas moléculas de ADN formadas a partir de otra antigua, tienen una hebra antigua y otra nueva.










ESTRUCTURA Y FUNCION DEL RNA

El RNA es el ácido nucleico más abundante en las células, es un poli nucleótido con características estructurales y funcionales que lo hacen diferente al DNA. Entre las características estructurales podemos mencionar las siguientes:

1.- Está formado por una sola cadena de polinucleótidos (Fig. 1).
2.- La molécula de azúcar que participa en su estructura es la ribosa.
3.- Las bases nitrogenadas que participan en la estructura de los nucleótidos son: adenina, guanina, citosina y uracilo.

A nivel funcional, el RNA juega un papel importante, ya que si el DNA contiene la información genética, el RNA hace posible que esta se exprese en términos de "síntesis de proteínas".

"El RNA participa en la síntesis de proteínas, permitiendo la expresión de
la información del DNA en términos de proteínas"


TIPOS DE RNA

En el interior de las células eucariótias, se reconocen varios tipos de RNA:

RNA mensajero o RNAm.
RNA ribosomal o RNAr.
RNA de transferencia o RNAt.
RNA heterogéneo normal o RNAhn.
RNA pequeño normal o RNAsn.

DNA y los Nucleótidos



El DNA está constituido por unidades llamadas nucleótidos, unidas entre sí formando largas cadenas.








A su vez, cada nucleótido está formado por tres partes: un fosfato, el azúcar desoxirribosa (desoxi porque es pariente cercana de otro azúcar, la ribosa, sólo que le falta un oxígeno), y una de cuatro moléculas conocidas como bases nitrogenadas. Estas últimas se dividen en dos grupos: las bases púricas (adenina y guanina) y las pirimídicas (timina y citosina), llamadas así porque se derivan de dos compuestos, la purina y la pirimidina.

Bacteriófagos



Los bacteriófagos son virus que infectan exclusivamente a bacterias.

Al igual que los virus que infectan células eucariotas, los fagos están constituidos por una cubierta proteica o cápside en cuyo interior está contenido su material genético, que puede ser ADN o ARN de simple o doble cadena, circular o lineal (en el 95% de los fagos conocidos es ADN de doble cadena), de 5.000 a 500.000 pares de bases. El tamaño de los fagos oscila entre 20 y 200 nm aproximadamente.

Los fagos son ubicuos y pueden ser encontrados en diversas poblaciones de bacterias, tanto en el suelo como en la flora intestinal de los animales. Uno de los ambientes más poblados por fagos y otros virus es el agua de mar, donde se estima que puede haber en torno a 109 partículas virales por mililitro, pudiendo estar infectadas por fagos el 70% de las bacterias marinas.

Normalmente se pueden utilizar en los alimentos para eliminar las bacterias

Transmisón Genética






Debido a los mecanismos de recombinación genética, el nuevo hijo ha heredado el DNA, los cromosomas normales y sexuales y el código genético de los padres pero en una combinación específica única por lo cual se parece a los padres, pero se constituye en una persona totalmente diferente a las demás. En el nuevo hijo, el código genético se transfiere de célula a célula por división celular normal (mitosis) y en la pubertad, un grupito de sus células en los ovarios (mujer) o testículos (hombre) transfiere el código genético a la siguiente generación por división celular especial o meiosis en gametos (óvulos en la mujer y espermatozoides en el hombre), y así sucesivamente......... La transmisión hereditaria de los genes, la distribución equilibrada en dos sexos (hombre y mujer), y la mezcla de los genes de ambos en la transmisión hereditaria están pues, garantizadas de generación a generación por este sistema cromosómico.














Avery
En 1944. AVERY, MCLEOD y MCCARTHY, se propusieron encontrar cuál era el componente que transmitía el carácter heredable y llegan a la conclusión de que sólo el ADN de las bacterias virulentas S muertas por el calor, era la sustancia que producía la transformación de las R, no virulentas, en S virulentas. Estas experiencias demostraban que el ADN era la molécula que contenía la información necesaria para que las bacterias S fueran virulentas y que, a pesar de estar muertas, su ADN no estaba destruido y podía pasar al medio y de aquí a las bacterias de cepa R integrándose en el genoma de éstas y transformándolas en virulentas.



















Griffith
Frederick Griffith estaba interesado en la virulencia (capacidad de infectar y producir enfermedad) de las bacterias causantes de la neumonía, llamadas Pneumonococcus. Este experimento marca el inicio de la investigación hacia el descubrimiento del ADN como material genético.

Alelos


Un alelo es cada una de las formas alternativas que puede tener un gen que se diferencian en su secuencia y que se puede manifestar en modificaciones concretas de la función de ese gen. Al ser la mayoría de los mamíferos diploides estos poseen dos alelos de cada gen, uno de ellos procedente del padre y el otro de la madre. Cada par de alelos se ubica en igual locus o lugar del cromosoma

GEN




Un gen es el conjunto de una secuencia determinada de nucleótidos de uno de los lados de la escalera del cromosoma referenciado. La secuencia puede llegar a formar proteínas, o serán inhibidas, dependiendo del programa asignado para la célula que aporte los cromosomas

Estructura de los cromosomas


Meiosis


En biología, meiosis (proviene del latín “hacer más pequeño”) es una de las formas de reproducción celular. Es un proceso divisional celular, en el cuál una célula diploide (2n), experimentará dos divisiones celulares sucesivas, con la capacidad de generar cuatro células haploide (n).

Este proceso se lleva a cabo en dos divisiones nucleares y citoplasmáticas, llamadas, primera y segunda división meiótica o simplemente Meiosis I y Meiosis II. Ambas comprenden Profase, Metafase, Anafase y Telofase. Durante la meiosis I los miembros de cada par homólogo de cromosomas se unen primero y luego se separan y se distribuyen en diferentes núcleos. En la Meiosis II, las cromátidas hermanas que forman cada cromosoma se separan y se distribuyen en los núcleos de las células hijas. Entre estas dos etapas sucesivas no existe la etapa S (duplicación del ADN).







Espermatogénesis
La espermatogénesis, en la especie humana, comienza cuando las células germinales de los túbulos seminíferos de los testículos se multiplican. Se forman unas células llamadas espermatogonias. Cuando el individuo alcanza la madurez sexual las espermatogonias aumentan de tamaño y se transforman en espermatocitos de primer orden. En estas células se produce la meiosis.
La meiosis no siempre es un proceso preciso, a veces los errores en la meiosis son responsables de las principales anomalías cromosómicas. La meiosis consigue mantener constante el número de cromosomas de las células de la especie para mantener la información genética.
Ovogénesis
La ovogénesis es el proceso de formación y diferenciación de los gametos femeninos u óvulos en los animales, incluido el ser humano. La ovogénesis, al igual que la espermatogénesis, se basa en el proceso de la meiosis, que produce, mediante dos divisiones sucesivas, cuatro células con un genotipo recombinado y la mitad de ADN.












Diferenciación entre Espermatogénesis y Ovogénesis
- Se acumula mayor cantidad de material nutritivo durante la ovogénesis que en la espermatogénesis.
- Las células resultantes de la ovogénesis presentan tamaños distintos debido a que el material nutritivo no se distribuye equitativamente, en cambio, en la espermatogénesis todas sus células resultantes son de igual tamaño.
- En la ovogénesis se produce sólo un gameto funcional. Al contrario, en la espermatogénesis se producen cuatro.
- En la espermatogénesis se requiere un proceso de diferenciación para obtener gametos funcionales. En la ovogénesis no.
- La ovogénesis se inicia en la mujer el tercer mes del desarrollo intrauterino. En el hombre, la espermatogénesis, cuando éste alcanza la pubertad.
- Los ovocitos primarios, de la ovogénesis, quedan retenidos en la premeiosis, hasta el momento de la ovulación. Los espermatozoides primarios continúan su proceso de reproducción meiótica.